# Role of ARTIFICIAL GROUND-WATER RECHARGE in STREAMFLOW MANAGEMENT: PAST, PRESENT, and FUTURE

ELOISE KENDY Hydrogeologist



ek65@cornell.edu



CLARK FORK
RIVER BASIN
GROUND
WATER
TECHNICAL
CONFERENCE

Missoula, MT Sept. 27, 2006



#### **OVERVIEW**

PAST: No artificial recharge; streamflow patterns were natural.



PRESENT (and recent past): Irrigation practices artificially recharge aquifers, which alters streamflow patterns.



FUTURE: Land-use changes present opportunities to use artificial recharge to maintain existing conditions or to restore natural streamflow patterns.

### Case study: Gallatin River, Montana



#### The Past: Natural Streamflow Pattern



**Average monthly flow of the Gallatin River at Gallatin Gateway** 





# The Present: Excess Irrigation Water Artificially Recharges Ground Water



Seasonal water-table fluctuation, Upper Big Hole Basin

# The Present: Streamflow under the Influence of Irrigation



Average monthly flow of the Gallatin River at Logan





# The Future: Irrigation Efficiency Improvements, Land-Use Change







Photos: Mike Roberts, Hydrologist, Montana DNRC WRB; http://www.parkcountyenvironmentalcouncil.org "Gallatin Gateway"

### **Ground-Water Model**



# Impact of Irrigation Efficiency Improvement on Streamflow





Reducing artificial recharge increases summer flows, decreases fall and winter flows compared to present (unnatural) conditions.

## Future: Water-Right Changes in Closed Basins



- Controlled ground-water areas
- Montana Supreme Court order
- Dept. ordered Milk River closures

- Compact closures
- Legislative closures
- Administrative rule closures

### **Future: Water-Right Changes in Closed Basins**



97/5.8

### **Augmentation:**

Conjunctive ground-water/surface-water management approach in which an existing diversion of surface water, with a water right, is retired to mitigate the stream depletion caused by new ground-water pumping.

#### **Conserves the**

- Quantity
- Location
- Timing

of ground-water discharge to surface water.

### **Ground-Water Model**



# Timing: Impact of Pumping Near Surface Water

Streamflow depletion (top) is in phase with ground-water pumping (bottom).



# Timing: Impact of Pumping Far from Surface Water

Streamflow depletion (top) takes more than eight years to peak and continues yearlong.

At peak, depletion = consumption.



The Future: Artificial
Recharge as a
Conjunctive Management
Tool



Rapid infiltration basins, Orlando, FL

Aquifer Storage and Recovery (ASR), Marco Lakes, FL Water Resource Solutions, Inc.

Recharge lagoon and municipal well, Dayton, OH

### Policy Questions: Food for Thought

Manage water-use changes on a caseby-case basis?

or

Develop basin-scale banking systems?



Maintain existing streamflow conditions?

or

Move toward restoring natural conditions?

### Augmentation scheme depends on management goals



### Summary: Role of Artificial Ground-Water Recharge in Streamflow Management

- PAST: No artificial recharge; natural streamflows
- PRESENT (and recent past): Excess irrigation water artificially recharges aquifers; fall and winter streamflows are higher, summer streamflows are lower than under natural conditions
- TITURE OF TONS: Use artificial recharge either to maintain current streamflow conditions or to approach more natural, past conditions



### For Details...

Kendy, Eloise and Bredehoeft, John D., 2006, Transient effects of groundwater pumping and surfacewater irrigation returns on streamflow: *Water Resources* 



Eloise Kendy, Ph.D. (406) 495-9910 ek65@cornell.edu

Research, vol. 42, no. 8.